Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
J Phys Chem A ; 128(12): 2323-2329, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38483325

RESUMEN

Studying the cleavage of the C═O bond during CO2 activation at room temperature is highly significant for comprehending the CO2 conversion processes. Herein, mass spectrometry experiments and density functional theory calculations indicate that the niobium carbide anions Nb3C4- can continuously convert five CO2 molecules to CO under thermal collision conditions, while the other clusters with less carbon ligands Nb3C1-3- reduce fewer CO2 molecules. Size-dependent reactivity of Nb3C1-4- cluster anions toward CO2 is observed. Interestingly, the carbon atoms in Nb3C4- not only act as highly active adsorption sites for CO2 but also serve as electron donors to reduce CO2. The stored electrons are released through a carbon-carbon coupling process. Our findings on the role of carbon ligands in enhancing transition metal carbide reactivity can offer new insights for designing active sites on catalysts with both high activity and selectivity.

2.
Inorg Chem ; 63(3): 1537-1542, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38181068

RESUMEN

The cleavage of inert C-H bonds in methane at room temperature and the subsequent conversion into value-added products are quite challenging. Herein, the reactivity of boron-doped cobalt oxide cluster cations CoBO2+ toward methane under thermal collision conditions was studied by mass spectrometry experiments and quantum-chemical calculations. In this reaction, one H atom and the CH3 unit of methane were transformed separately to generate the product metaboric acid (HBO2) and one CoCH3+ ion, respectively. Theoretical calculations strongly suggest that a catalytic cycle can be completed by the recovery of CoBO2+ through the reaction of CoCH3+ with sodium perborate (NaBO3), and this reaction generates sodium methoxide (CH3ONa) as the other value-added product. This study shows that boron-doped cobalt oxide species are highly reactive to facilitate thermal methane transformation and may open a way to develop more effective approaches for methane (CH4) activation and conversion under mild conditions.

3.
J Phys Chem A ; 128(2): 449-455, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38174707

RESUMEN

Nitrogen (N2) activation at room temperature has long been a great challenge. Therefore, the rational design of reactive species to adsorb N2, which is a prerequisite for cleavage of the strong N≡N triple bond in industrial and biological processes, is highly desirable and meaningful. Herein, the N2 adsorption process is controlled by regulating the types and numbers of organic ligands, and the organic ligands are produced through the reactions of Ir+ with methane and ethane. CH4 molecules dissociate on the Ir+ cations to form Ir(CH2)1,2+. The reaction of Ir+ with C2H6 can generate HIrC2H3+, which is different from the structure of Ir(CH2)2+ obtained from Ir+/CH4. The reactivity order of N2 adsorption is Ir(CH2)2+ > HIrC2H3+ ≫ HIrCH+ ≈ Ir+ (almost inert under similar reaction conditions), indicating that different organic ligand structures affect reactivity dramatically. The main reason for this interesting reactivity difference is that the lowest unoccupied molecular orbital (LUMO) level of Ir(CH2)2+ is much closer to the highest occupied molecular orbital (HOMO) level of N2 than those of the other three systems. This study provides new insights into the adsorption of N2 on metal-organic ligand species, in which the organic ligand dominates the reactivity, and it discovers new clues in designing effective transition metal carbine species for N2 activation.

4.
Phys Chem Chem Phys ; 26(5): 3912-3919, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230689

RESUMEN

N2 adsorption is a prerequisite for activation and transformation. Time-of-flight mass spectrometry experiments show that the Nb2C6H4+ cation, resulting from the gas-phase reaction of Nb2+ with C6H6, is more favorable for N2 adsorption than Nb+ and Nb2+ cations. Density functional theory calculations reveal the effect of the ortho-C6H4 ligand on N2 adsorption. In Nb2C6H4+, interactions between the Nb-4d and C-2p orbitals enable the Nb2+ cation to form coordination bonds with the ortho-C6H4 ligand. Although the ortho-C6H4 ligand in Nb2C6H4+ is not directly involved in the reaction, its presence increases the polarity of the cluster and brings the highest occupied molecular orbital (HOMO) closer to the lowest occupied molecular orbital (LUMO) of N2, thereby increasing the N2 adsorption energy, which effectively facilitates N2 adsorption and activation. This study provides fundamental insights into the mechanisms of N2 adsorption in "transition metal-organic ligand" systems.

5.
Inorg Chem ; 63(5): 2562-2568, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38268414

RESUMEN

Layered hybrid perovskites show significant advantages in the field of optoelectronics. However, the low quantum efficiency and complex preparation methods limit their applications. In this work, we developed a series of perovskite powders with a two-dimensional (2D) layered structure of organic-inorganic hybrid metal halides M2CdCl4:x%Mn (M = CH3NH3+, C2H8N+, C3H10N+) via facile mechanochemical methods. The prepared manganese Mn-doped MA2CdCl4 produces orange emission at 605 nm under both 254 and 420 nm excitation, which originates from a dual excitation channel competition mechanism, and its excitation channel could be changed with the increase of Mn2+ ion concentration. Typically, MA2CdCl4:20%Mn powder exhibits high photoluminescence quantum yield (PLQY) close to 90% at 605 nm due to the organic amine ions enlarging the Mn-Mn interlayer distances. In addition, we prepared MA2CdCl4:x%Mn@PVA flexible films, which also exhibit good luminescence at 254 nm excitation and were unexpectedly found to have a better response to Cs+, which could be a candidate for anticounterfeiting applications.

6.
Nat Prod Res ; 38(5): 838-847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37139787

RESUMEN

Three new diterpenoids, named nematocynine A-C (1-3), together with twelve known compounds (4-15) were isolated from the aerial part of Euphorbia nematocypha Hand.-Mazz (Hereinafter referred to E. nematocypha). Their structures were elucidated by detailed spectroscopic analysis and comparison with literature data. In addition, all the compounds were tested for their anti-candida albicans activities used alone or in combination with fluconazole against sensitive strain and resistant strain in vitro. Wherein only compound 11 shows weak activity against candida albicans resistant strain (MIC50 = 128.15 µg/mL) when used alone. Compounds 1, 4, 7, 8, 9, 10, 12, 13 and 15 in combination with fluconazole showed potent anti-fungal activities (MIC50 = 15 ± 5 µg/mL, FICI = 0.05 ± 0.04) against the Candida albicans resistant strain SC5314-FR. The synergistic effects were weaker against the Candida albicans resistant strain SC5314-FR when the compounds 2, 3, 5 and 14 were combined with fluconazole (FICI = 0.16 ± 0.06).


Asunto(s)
Diterpenos , Euphorbia , Fluconazol/farmacología , Euphorbia/química , Candida albicans , Diterpenos/farmacología , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica
7.
J Phys Chem Lett ; 14(34): 7597-7602, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37603698

RESUMEN

Dinitrogen (N2) activation and its chemical transformations are some of the most challenging topics in chemistry. Herein, we report that heteronuclear metal anions AuNbBO- can mediate the direct coupling of N2 and O2 to generate NO molecules. N2 first forms the nondissociative adsorption product AuNbBON2- on AuNbBO-. In the following reactions with two O2 molecules, two NO molecules are gradually released, with the formation of AuNbBO2N- and AuNbBO3-. In the reaction with the first O2, the generated nitrene radical (N••-) originating from the dissociated N2, induces the activation of O2. Subsequently, the second O2 is anchored and forms a superoxide radical (O2•-); this radical attacks the other N atom to form an N-O bond, releasing the second NO. The N••- and O2•- radicals play key roles in the reactions. The mechanism adopted in this direct oxidation of N2 by O2 to NO can be labeled as a Zeldovich-like mechanism.

8.
Inorg Chem ; 62(30): 12119-12129, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37471711

RESUMEN

Based on the principle of heterogeneous catalysis for water electrolysis, electrocatalysts with appropriate electronic structure and photothermal property are expected to drive the oxygen evolution reaction effectively. Herein, amorphous NiSx-coupled nanourchin-like Co3O4 was prepared on nickel foam (NiSx@Co3O4/NF) and investigated as a electrocatalyst for photothermal-assisted oxygen evolution reaction. The experimental investigations and simulant calculations jointly revealed NiSx@Co3O4/NF to be of suitable electronic structure and high near-infrared photothermal conversion capability to achieve the oxygen evolution reaction advantageously both in thermodynamics and in kinetics. Relative to Co3O4/NF and NiSx/NF, better oxygen evolution reaction activity, kinetics, and stability were achieved on NiSx@Co3O4/NF in 1.0 M KOH owing to the NiSx/Co3O4 synergetic effect. In addition, the oxygen evolution reaction performance of NiSx@Co3O4/NF can be obviously enhanced under near-infrared light irradiation, since NiSx@Co3O4 can absorb the near-infrared light to produce electric and thermal field. For the photothermal-mediated oxygen evolution reaction, the overpotential and Tafel slope of NiSx@Co3O4/NF at 50 mA cm-2 were reduced by 23 mV and 13 mV/dec, respectively. The present work provides an inspiring reference to design and develop photothermal-assisted water electrolysis using abundant solar energy.

9.
Phytochemistry ; 210: 113665, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37044361

RESUMEN

Fourteen undescribed seco-type diterpenoids, named nudifloids A-N, together with ten known analogs, were isolated from the leaves of Callicarpa nudiflora. Nudifloids A-N had a characteristic 3,4-seco-labdane-type diterpenoid skeleton, whereas nudifloids A-C and K-N were 3,4-seco-norditerpenoids. Nudifloid A was the first example of a 3,4-seco-12,13,14,15,16-quartnor-labdane diterpenoid, with a seven-membered lactone ring formed through esterification between C-3 and C-11. Nudifloids B and C were a pair of highly modified 3,4-seco-labdane nor-diterpenoid epimers, of which C-2 and C-18 were cyclized together to form a cyclohexene fragment. The structures of these undescribed diterpenoids were established by spectroscopic analysis and reference data. The anti-inflammatory activity of diterpenoids in rich yield was evaluated by analyzing the inhibition of lipopolysaccharide plus nigericin-induced pyroptosis in J774A.1 cells. Nudifloids D and E exhibited prominent anti-NLRP3 inflammasome activity, with IC50 values of 1.80 and 1.59 µM, respectively. Cell permeability assays revealed that nudifloid D inhibited pyroptosis, which could ameliorate inflammation by blocking the activation of the NLRP3 inflammasome.


Asunto(s)
Callicarpa , Diterpenos , Medicamentos Herbarios Chinos , Callicarpa/química , Inflamasomas , Estructura Molecular , Medicamentos Herbarios Chinos/química , Diterpenos/farmacología , Diterpenos/química
10.
Inorg Chem ; 62(15): 6102-6108, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37021782

RESUMEN

The direct coupling of dinitrogen (N2) and oxygen (O2) to produce value-added chemicals such as nitric acid (HNO3) at room temperature is fascinating but quite challenging because of the inertness of N2 molecules. Herein, an interesting reaction pathway is proposed for a direct conversion of N2 and O2 mediated by all-metal Y3+ cations. This reaction pattern begins with the N≡N triple bond cleavage by Y3+ to generate a dinitride cation Y2N2+, and the electrons that lead to N2 activation in this process mainly originate from Y atoms. In the following consecutive reactions with two O2 molecules, the electrons stored in the N atoms are gradually released to reduce O2 through re-formation and re-fracture of the N-N bonds, with concomitant release of two NO molecules. Therefore, the reversible N-N bond switching acts as an efficient electron reservoir to drive the oxidation of the reduced N atoms, leading to the formation of NO molecules. This method of producing NO by direct coupling N2 and O2 molecules, which is the reversible N-N bond switching, may provide a new strategy for the direct synthesis of HNO3, etc.

11.
J Phys Chem A ; 127(14): 3082-3087, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37014705

RESUMEN

Compared with transition metals, nonmetallic elements have always been considered to have low reactivity toward carbon dioxide. However, in recent years, main-group compounds such as boron-based species have gradually attracted increasing attention due to their prospective applications in different kinds of reactions. Herein, we report that metal-free anions B2O2- can promote two CO2 reductions, producing the oxygen-rich product B2O4-. In most of the reported CO2 reduction reactions mediated by transition-metal-containing clusters, transition metals usually provide electrons for the activation of CO2; one oxygen atom in CO2 is transferred to metal atoms, and CO is released from the metal atoms. In sharp contrast, B atoms are electron donors in the current systems and the formed CO is liberated directly from the activated CO2 unit. The synthesis of novel-metal-free gas-phase clusters and investigation of their reactivity toward carbon dioxide as well as reaction mechanisms can provide a fundamental basis in practice for the rational design of active sites on metal-free catalysts.

12.
Inorg Chem ; 62(14): 5872-5879, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978229

RESUMEN

The d10 metal oxides with low effective mass and high mobility of photoexcited electrons have received much attention in photocatalytic water splitting. However, there are still challenges in practical application due to insufficient visible light absorption. Here, an unusual phenomenon of the In2+ cation in PtIn6(GeO4)2O and PtIn6(Ga/InO4)2 with a narrow band gap is systematically investigated using density functional theory calculations. According to chemical bond analysis, the final band edge structure results from the interaction between the empty In-5p orbitals and the occupied antibonding state of the In 5s-O 2p orbitals as well as the further hybridization of adjacent In cations in PtIn6 octahedrons. The unique bonding characteristic of In2+ cations endows them with a narrow band gap and visible light response ability. Moreover, the occupied antibonding state could weaken the strength of the In-O covalent bond and strengthen the orbital hybridization of the In-In bond, causing the conduction band minimum to be located in the electroactive In6 cavity. This work reveals the origin of the narrow band gap of PtIn6(GeO4)2O and PtIn6(Ga/InO4)2 in view of bond theory and shows that they are promising semiconductors for the application of photocatalytic H2 generation.

13.
Nat Prod Res ; 37(8): 1258-1264, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34738856

RESUMEN

A pair of new oxindole alkaloids, named macrophyllines C (1) and D (2), together with two known oxindole alkaloids isorhynchophylline (3) and corynoxine (4) were isolated from Uncaria macrophylla. Their structures were elucidated based on detailed spectroscopic analysis and by comparison with literature data. In addition, all the isolates were tested for their anti-HIV activities and cytotoxicities in C8166 cells and compounds 2-4 showed weak anti-HIV activities with EC50 values of 11.31 ± 3.29 µM, 18.77 ± 6.14 µM and 30.02 ± 3.73 µM, respectively.


Asunto(s)
Alcaloides , Uncaria , Oxindoles/farmacología , Alcaloides/química , Análisis Espectral , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química
14.
Front Oncol ; 12: 961274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408135

RESUMEN

DNA damage repair (DDR) is essential for maintaining genome integrity and modulating cancer risk, progression, and therapeutic response. DDR defects are common among non-small lung cancer (NSCLC), resulting in new challenge and promise for NSCLC treatment. Thus, a thorough understanding of the molecular characteristics of DDR in NSCLC is helpful for NSCLC treatment and management. Here, we systematically analyzed the relationship between DDR alterations and NSCLC prognosis, and successfully established and validated a six-DDR gene prognostic model via LASSO Cox regression analysis based on the expression of prognostic related DDR genes, CDC25C, NEIL3, H2AFX, NBN, XRCC5, RAD1. According to this model, NSCLC patients were classified into high-risk subtype and low-risk subtype, each of which has significant differences between the two subtypes in clinical features, molecular features, immune cell components, gene mutations, DDR pathway activation status and clinical outcomes. The high-risk patients was characterized with worse prognosis, lower proportion and number of DDR mutations, unique immune profile and responsive to immunetherapy. And the low-risk patients tend to have superior survival, while being less responsive to immunotherapy and more sensitive to treatment with DNA-damaging chemotherapy drugs. Overall, this molecular classification based on DDR expression profile enables hierarchical management of patients and personalized clinical treatment, and provides potential therapeutic targets for NSCLC.

15.
J Phys Chem Lett ; 13(46): 10697-10704, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36367460

RESUMEN

The conversion of dinitrogen to more useful and reactive molecules has been the focus of intense research by chemists. In contrast to reductive N2 fixation, direct oxidation of N2 by O2 to nitric oxide under mild conditions via a thermochemical process is extremely challenging. Herein, we report the first example of N2 and O2 activation and coupling under thermochemical conditions through the remarkable ability of Y2BO+ to react with one N2 and two O2 molecules. Detailed mechanistic studies using mass spectrometry and quantum chemical calculations revealed that the N2 activation by Y2BO+ is facilitated by the double aromatic character of the Y2BON2+ intermediate. Subsequent oxidation with O2 releases NO in a dearomatization process driven by the formation of stronger Y-O bonds over the Y-N bonds. Our findings represent the first example of N2 and O2 activation and coupling under thermochemical conditions at room temperature, providing a novel strategy for small-molecule activation.

16.
Angew Chem Int Ed Engl ; 61(48): e202208937, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36197752

RESUMEN

Halide perovskite has been widely studied as a new generation of photoelectronic materials. However, their thermal and humidity-induced emission quenching have greatly limited their utility and reliability. Here, we report a hexagonal Mn2+ -doped CsCdCl3 perovskite crystal that possesses stable photoluminescence (PL) at both high temperature and humidity. The room temperature long-persistent luminescence (LPL) of the single crystals lasts up to 1480 s and can be adjusted by changing the concentration of Mn2+ ion doping. The characteristic emission of d-d transition of Mn2+ is realized, and the photoluminescence quantum yield (PLQY) is up to 91.4 %, it can maintain more than 90 % of the initial PL spectral integral area at 150 °C (423 K). High humid stability PL can be achieved more than 75 % of the initial PL intensity after 55 days of immersion in water. These excellent properties show the application prospect of the LPL material in lighting indication and anti-counterfeiting.

17.
Materials (Basel) ; 15(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36295141

RESUMEN

In this paper, we estimated the temperature-dependent critical inclusion size for microcracking under residual stress and applied stress for particulate-reinforced ultra-high-temperature ceramic matrix composites. The critical flaw size and applied stress for the stable growth of radial cracks under different temperatures were also estimated. It was found that under a lower applied stress, the critical inclusion size was sensitive to the temperature. Under higher applied stresses, the sensitivity became smaller. For ceramic materials with pre-existing microcracks, the crack resistance could be improved by increasing the service stress when the service stress was low. As the temperature increased, the critical flaw size of the materials decreased; the applied stress first increased and then decreased. Finally, a temperature-dependent fracture strength model of composites with a pre-existing critical flaw was proposed. A good agreement was obtained between the model prediction and the experimental data. In this work, we show a method for the characterization of the effects of temperature on the fracture behavior of ceramic-based composites.

18.
Fitoterapia ; 162: 105302, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36116613

RESUMEN

Ten new prenylated flavonoids, named denticulains A-J (1-10), together with seven known prenylated flavonoids (11-17) were isolated from Macaranga denticulata. Their structures were elucidated on the basis of detailed spectroscopic analysis and by comparison with literature data. In addition, compounds 1 and 14 inhibited the proliferation of SW620 and HCT-116 cell lines with an IC50 value of 46.08 µM and 56.83 µM, respectively.


Asunto(s)
Antineoplásicos Fitogénicos , Euphorbiaceae , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Euphorbiaceae/química , Flavonoides/química , Flavonoides/farmacología , Estructura Molecular
19.
Materials (Basel) ; 15(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955379

RESUMEN

Recent years have witnessed a growing research interest in graphene-reinforced alumina matrix composites (Al2O3-G). In this paper, to better achieve the dispersion of graphene in composites, a ball milling method for adding raw materials step by step, called stepwise feeding ball milling, was proposed. The Al2O3-1.0 wt % graphene composites were prepared by this stepwise feeding ball milling and hot pressing. Then, the effects of sintering temperature and sintering pressure on the microstructure and mechanical properties of composites were studied. Results showed that the bending strength, fracture toughness and Vickers hardness of composites increased firstly and then decreased with increasing sintering temperature. The mechanical properties of composites were all at their maximum with the sintering temperature of 1550 °C. For example, the bending strength of composites reached 754.20 MPa, which was much bigger than 478.03 MPa at 1500 °C and 364.01 MPa at 1600 °C. Analysis suggested that the strength of composites was mainly related to the grain size, microflaw size and porosity.

20.
Chemistry ; 28(64): e202201170, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35997766

RESUMEN

Transition-metal catalyzed coupling to form C-N bonds is significant in chemical science. However, the inert nature of N2 and CO2 renders their coupling quite challenging. Herein, we report the activation of dinitrogen in the mild plasma atmosphere by the gas-phase monometallic YB1-4 - anions and further coupling of CO2 to form C-N bonds by using mass spectrometry and theoretical calculation. The observed product anions are NCNBO- and N(BO)2 - , accompanied by the formation of neutral products YO and YB0-2 NC, respectively. We can tune the reactivity and the type of products by manipulating the number of B atoms. The B atoms in YB1-4 N2 - act as electron donors in CO2 reduction reactions, and the carbon atom originating from CO2 serves as an electron reservoir. This is the first example of gas-phase monometallic anions, which are capable to realize the functionalization of N2 with CO2 through C-N bond formation and N-N and C-O bond cleavage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...